Metamath Proof Explorer


Theorem rngosn6

Description: Obsolete as of 25-Jan-2020. Use ringen1zr or srgen1zr instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses on1el3.1 𝐺 = ( 1st𝑅 )
on1el3.2 𝑋 = ran 𝐺
on1el3.3 𝑍 = ( GId ‘ 𝐺 )
Assertion rngosn6 ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o𝑅 = ⟨ { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ ) )

Proof

Step Hyp Ref Expression
1 on1el3.1 𝐺 = ( 1st𝑅 )
2 on1el3.2 𝑋 = ran 𝐺
3 on1el3.3 𝑍 = ( GId ‘ 𝐺 )
4 1 2 3 rngo0cl ( 𝑅 ∈ RingOps → 𝑍𝑋 )
5 1 2 rngosn4 ( ( 𝑅 ∈ RingOps ∧ 𝑍𝑋 ) → ( 𝑋 ≈ 1o𝑅 = ⟨ { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ ) )
6 4 5 mpdan ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o𝑅 = ⟨ { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ ) )