Metamath Proof Explorer


Theorem rngosub

Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 𝐺 = ( 1st𝑅 )
ringnegcl.2 𝑋 = ran 𝐺
ringnegcl.3 𝑁 = ( inv ‘ 𝐺 )
ringsub.4 𝐷 = ( /𝑔𝐺 )
Assertion rngosub ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ringnegcl.1 𝐺 = ( 1st𝑅 )
2 ringnegcl.2 𝑋 = ran 𝐺
3 ringnegcl.3 𝑁 = ( inv ‘ 𝐺 )
4 ringsub.4 𝐷 = ( /𝑔𝐺 )
5 1 rngogrpo ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp )
6 2 3 4 grpodivval ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )
7 5 6 syl3an1 ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )