Step |
Hyp |
Ref |
Expression |
1 |
|
ringsubdi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ringsubdi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ringsubdi.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
ringsubdi.4 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
6 |
1 3 5 4
|
rngosub |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
7 |
6
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
8 |
7
|
oveq1d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) ) |
9 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
10 |
9
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
11 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐻 𝐶 ) ∈ 𝑋 ) |
12 |
11
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐻 𝐶 ) ∈ 𝑋 ) |
13 |
10 12
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 𝐻 𝐶 ) ∈ 𝑋 ) ) |
14 |
1 3 5 4
|
rngosub |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 𝐻 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) |
15 |
14
|
3expb |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 𝐻 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) |
16 |
13 15
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) |
17 |
|
idd |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) ) |
18 |
1 3 5
|
rngonegcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
19 |
18
|
ex |
⊢ ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) ) |
20 |
|
idd |
⊢ ( 𝑅 ∈ RingOps → ( 𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋 ) ) |
21 |
17 19 20
|
3anim123d |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
23 |
1 2 3
|
rngodir |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) |
24 |
22 23
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) |
25 |
1 2 3 5
|
rngoneglmul |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) |
26 |
25
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) |
28 |
24 27
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) |
29 |
16 28
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) = ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) ) |
30 |
8 29
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) ) |