Metamath Proof Explorer


Theorem rngsubdir

Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014) Generalization of ringsubdir . (Revised by AV, 23-Feb-2025)

Ref Expression
Hypotheses rngsubdi.b 𝐵 = ( Base ‘ 𝑅 )
rngsubdi.t · = ( .r𝑅 )
rngsubdi.m = ( -g𝑅 )
rngsubdi.r ( 𝜑𝑅 ∈ Rng )
rngsubdi.x ( 𝜑𝑋𝐵 )
rngsubdi.y ( 𝜑𝑌𝐵 )
rngsubdi.z ( 𝜑𝑍𝐵 )
Assertion rngsubdir ( 𝜑 → ( ( 𝑋 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( 𝑌 · 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 rngsubdi.b 𝐵 = ( Base ‘ 𝑅 )
2 rngsubdi.t · = ( .r𝑅 )
3 rngsubdi.m = ( -g𝑅 )
4 rngsubdi.r ( 𝜑𝑅 ∈ Rng )
5 rngsubdi.x ( 𝜑𝑋𝐵 )
6 rngsubdi.y ( 𝜑𝑌𝐵 )
7 rngsubdi.z ( 𝜑𝑍𝐵 )
8 eqid ( invg𝑅 ) = ( invg𝑅 )
9 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
10 4 9 syl ( 𝜑𝑅 ∈ Grp )
11 1 8 10 6 grpinvcld ( 𝜑 → ( ( invg𝑅 ) ‘ 𝑌 ) ∈ 𝐵 )
12 eqid ( +g𝑅 ) = ( +g𝑅 )
13 1 12 2 rngdir ( ( 𝑅 ∈ Rng ∧ ( 𝑋𝐵 ∧ ( ( invg𝑅 ) ‘ 𝑌 ) ∈ 𝐵𝑍𝐵 ) ) → ( ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( ( invg𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) )
14 4 5 11 7 13 syl13anc ( 𝜑 → ( ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( ( invg𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) )
15 1 2 8 4 6 7 rngmneg1 ( 𝜑 → ( ( ( invg𝑅 ) ‘ 𝑌 ) · 𝑍 ) = ( ( invg𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) )
16 15 oveq2d ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( ( invg𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) )
17 14 16 eqtrd ( 𝜑 → ( ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) )
18 1 12 8 3 grpsubval ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) )
19 5 6 18 syl2anc ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) )
20 19 oveq1d ( 𝜑 → ( ( 𝑋 𝑌 ) · 𝑍 ) = ( ( 𝑋 ( +g𝑅 ) ( ( invg𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) )
21 1 2 rngcl ( ( 𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 )
22 4 5 7 21 syl3anc ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 )
23 1 2 rngcl ( ( 𝑅 ∈ Rng ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 · 𝑍 ) ∈ 𝐵 )
24 4 6 7 23 syl3anc ( 𝜑 → ( 𝑌 · 𝑍 ) ∈ 𝐵 )
25 1 12 8 3 grpsubval ( ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 · 𝑍 ) ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) )
26 22 24 25 syl2anc ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) )
27 17 20 26 3eqtr4d ( 𝜑 → ( ( 𝑋 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( 𝑌 · 𝑍 ) ) )