Metamath Proof Explorer


Theorem rnmpo

Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011)

Ref Expression
Hypothesis rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion rnmpo ran 𝐹 = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 }

Proof

Step Hyp Ref Expression
1 rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
3 1 2 eqtri 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
4 3 rneqi ran 𝐹 = ran { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
5 rnoprab2 ran { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 }
6 4 5 eqtri ran 𝐹 = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 }