Step |
Hyp |
Ref |
Expression |
1 |
|
rnmposs.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
1
|
rnmpo |
⊢ ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } |
3 |
2
|
abeq2i |
⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ) |
4 |
|
2r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝐷 ↔ 𝐶 ∈ 𝐷 ) ) |
6 |
5
|
biimparc |
⊢ ( ( 𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶 ) → 𝑧 ∈ 𝐷 ) |
7 |
6
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶 ) → 𝑧 ∈ 𝐷 ) ) |
8 |
7
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶 ) → 𝑧 ∈ 𝐷 ) |
9 |
4 8
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ) → 𝑧 ∈ 𝐷 ) |
10 |
9
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
11 |
3 10
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ( 𝑧 ∈ ran 𝐹 → 𝑧 ∈ 𝐷 ) ) |
12 |
11
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷 ) |