Step |
Hyp |
Ref |
Expression |
1 |
|
rnmpt0f.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rnmpt0f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
rnmpt0f.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉 ) ) |
5 |
1 4
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
6 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
8 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝜑 → ( 𝐴 = ∅ ↔ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) ) |
10 |
|
dm0rn0 |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) ) |
12 |
3
|
rneqi |
⊢ ran 𝐹 = ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ran 𝐹 = ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ran 𝐹 ) |
15 |
14
|
eqeq1d |
⊢ ( 𝜑 → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran 𝐹 = ∅ ) ) |
16 |
9 11 15
|
3bitrrd |
⊢ ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |