Metamath Proof Explorer


Theorem rnmptbd

Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbd.x 𝑥 𝜑
rnmptbd.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion rnmptbd ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 rnmptbd.x 𝑥 𝜑
2 rnmptbd.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 breq2 ( 𝑦 = 𝑤 → ( 𝐵𝑦𝐵𝑤 ) )
4 3 ralbidv ( 𝑦 = 𝑤 → ( ∀ 𝑥𝐴 𝐵𝑦 ↔ ∀ 𝑥𝐴 𝐵𝑤 ) )
5 4 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 )
6 5 a1i ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ) )
7 nfv 𝑤 𝜑
8 1 7 2 rnmptbdlem ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑤 ) )
9 breq2 ( 𝑤 = 𝑦 → ( 𝑢𝑤𝑢𝑦 ) )
10 9 ralbidv ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑤 ↔ ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑦 ) )
11 breq1 ( 𝑢 = 𝑧 → ( 𝑢𝑦𝑧𝑦 ) )
12 11 cbvralvw ( ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑦 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
13 10 12 bitrdi ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑤 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
14 13 cbvrexvw ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑤 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
15 14 a1i ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥𝐴𝐵 ) 𝑢𝑤 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
16 6 8 15 3bitrd ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )