| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptbd2.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
rnmptbd2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵 ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ) ) |
| 5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ) ) |
| 7 |
1 2
|
rnmptbd2lem |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑢 ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≤ 𝑢 ↔ 𝑦 ≤ 𝑢 ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑢 ↔ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑢 ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑦 ≤ 𝑢 ↔ 𝑦 ≤ 𝑧 ) ) |
| 11 |
10
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑢 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
| 12 |
9 11
|
bitrdi |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑢 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |
| 13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑢 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑤 ≤ 𝑢 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |
| 15 |
6 7 14
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |