Step |
Hyp |
Ref |
Expression |
1 |
|
rnmptbd2lem.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rnmptbd2lem.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
3
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
5 |
4
|
elv |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ≤ 𝑧 |
8 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ≤ 𝐵 ) |
9 |
|
simpl |
⊢ ( ( 𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵 ) → 𝑦 ≤ 𝐵 ) |
10 |
|
id |
⊢ ( 𝑧 = 𝐵 → 𝑧 = 𝐵 ) |
11 |
10
|
eqcomd |
⊢ ( 𝑧 = 𝐵 → 𝐵 = 𝑧 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵 ) → 𝐵 = 𝑧 ) |
13 |
9 12
|
breqtrd |
⊢ ( ( 𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵 ) → 𝑦 ≤ 𝑧 ) |
14 |
13
|
ex |
⊢ ( 𝑦 ≤ 𝐵 → ( 𝑧 = 𝐵 → 𝑦 ≤ 𝑧 ) ) |
15 |
8 14
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 = 𝐵 → 𝑦 ≤ 𝑧 ) ) |
16 |
15
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑦 ≤ 𝑧 ) ) ) |
17 |
6 7 16
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑦 ≤ 𝑧 ) ) |
18 |
17
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑦 ≤ 𝑧 ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑦 ≤ 𝑧 ) |
20 |
5 19
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑦 ≤ 𝑧 ) |
21 |
20
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |
23 |
22
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |
24 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
25 |
24
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
26 |
25 7
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 |
27 |
1 26
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
28 |
|
breq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝐵 ) ) |
29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) |
30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
31 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
32 |
3 30 31
|
elrnmpt1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
33 |
28 29 32
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ≤ 𝐵 ) |
34 |
27 33
|
ralrimia |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) ) |
36 |
35
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ) ) |
37 |
23 36
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑦 ≤ 𝑧 ) ) |