Metamath Proof Explorer


Theorem rnmptbddlem

Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbddlem.x 𝑥 𝜑
rnmptbddlem.b ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
Assertion rnmptbddlem ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 rnmptbddlem.x 𝑥 𝜑
2 rnmptbddlem.b ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
3 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
4 3 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
5 4 elv ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
6 nfv 𝑥 𝑦 ∈ ℝ
7 1 6 nfan 𝑥 ( 𝜑𝑦 ∈ ℝ )
8 nfra1 𝑥𝑥𝐴 𝐵𝑦
9 7 8 nfan 𝑥 ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 )
10 nfv 𝑥 𝑧𝑦
11 simp3 ( ( ∀ 𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵 ) → 𝑧 = 𝐵 )
12 rspa ( ( ∀ 𝑥𝐴 𝐵𝑦𝑥𝐴 ) → 𝐵𝑦 )
13 12 3adant3 ( ( ∀ 𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵 ) → 𝐵𝑦 )
14 11 13 eqbrtrd ( ( ∀ 𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵 ) → 𝑧𝑦 )
15 14 3exp ( ∀ 𝑥𝐴 𝐵𝑦 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝑧𝑦 ) ) )
16 15 adantl ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 ) → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝑧𝑦 ) ) )
17 9 10 16 rexlimd ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 ) → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝑦 ) )
18 17 imp ( ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 ) ∧ ∃ 𝑥𝐴 𝑧 = 𝐵 ) → 𝑧𝑦 )
19 5 18 sylan2b ( ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 ) ∧ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑧𝑦 )
20 19 ralrimiva ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ ∀ 𝑥𝐴 𝐵𝑦 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
21 20 2 reximddv3 ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )