| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rnmptbddlem.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							rnmptbddlem.b | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 4 | 
							
								3
							 | 
							elrnmpt | 
							⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ℝ  | 
						
						
							| 7 | 
							
								1 6
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  ℝ )  | 
						
						
							| 8 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  | 
						
						
							| 10 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑧  ≤  𝑦  | 
						
						
							| 11 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ∧  𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 )  →  𝑧  =  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≤  𝑦 )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant3 | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ∧  𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 )  →  𝐵  ≤  𝑦 )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							eqbrtrd | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  ∧  𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 )  →  𝑧  ≤  𝑦 )  | 
						
						
							| 15 | 
							
								14
							 | 
							3exp | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦  →  ( 𝑥  ∈  𝐴  →  ( 𝑧  =  𝐵  →  𝑧  ≤  𝑦 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑧  =  𝐵  →  𝑧  ≤  𝑦 ) ) )  | 
						
						
							| 17 | 
							
								9 10 16
							 | 
							rexlimd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  →  ( ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵  →  𝑧  ≤  𝑦 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imp | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  ∧  ∃ 𝑥  ∈  𝐴 𝑧  =  𝐵 )  →  𝑧  ≤  𝑦 )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							sylan2b | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  ∧  𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  →  𝑧  ≤  𝑦 )  | 
						
						
							| 20 | 
							
								19
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 )  →  ∀ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 21 | 
							
								20 2
							 | 
							reximddv3 | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  |