| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptbdlem.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
rnmptbdlem.y |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
rnmptbdlem.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
| 5 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
| 6 |
4 5
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
| 7 |
1 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 9 |
7 8
|
rnmptbdd |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 10 |
9
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 12 |
11
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 |
| 14 |
12 13
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 |
| 15 |
1 14
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 16 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 20 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 21 |
18 19 20
|
elrnmpt1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 |
16 17 21
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) |
| 23 |
15 22
|
ralrimia |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
| 25 |
24
|
a1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) ) |
| 26 |
2 25
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
| 27 |
10 26
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |