Step |
Hyp |
Ref |
Expression |
1 |
|
rnmptbdlem.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rnmptbdlem.y |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
rnmptbdlem.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
5 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
6 |
4 5
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
7 |
1 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
9 |
7 8
|
rnmptbdd |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
10 |
9
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
12 |
11
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
13 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 |
14 |
12 13
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 |
15 |
1 14
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
16 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
20 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
21 |
18 19 20
|
elrnmpt1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
16 17 21
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) |
23 |
15 22
|
ralrimia |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
25 |
24
|
a1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) ) |
26 |
2 25
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |
27 |
10 26
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |