Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
rnmptc
Metamath Proof Explorer
Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi , 11-Dec-2019) Remove extra hypothesis. (Revised by SN , 17-Apr-2024)
Ref
Expression
Hypotheses
rnmptc.f
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
rnmptc.a
⊢ ( 𝜑 → 𝐴 ≠ ∅ )
Assertion
rnmptc
⊢ ( 𝜑 → ran 𝐹 = { 𝐵 } )
Proof
Step
Hyp
Ref
Expression
1
rnmptc.f
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
2
rnmptc.a
⊢ ( 𝜑 → 𝐴 ≠ ∅ )
3
fconstmpt
⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
4
1 3
eqtr4i
⊢ 𝐹 = ( 𝐴 × { 𝐵 } )
5
4
rneqi
⊢ ran 𝐹 = ran ( 𝐴 × { 𝐵 } )
6
rnxp
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } )
7
5 6
eqtrid
⊢ ( 𝐴 ≠ ∅ → ran 𝐹 = { 𝐵 } )
8
2 7
syl
⊢ ( 𝜑 → ran 𝐹 = { 𝐵 } )