Metamath Proof Explorer


Theorem rnmptfi

Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis rnmptfi.a 𝐴 = ( 𝑥𝐵𝐶 )
Assertion rnmptfi ( 𝐵 ∈ Fin → ran 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 rnmptfi.a 𝐴 = ( 𝑥𝐵𝐶 )
2 mptfi ( 𝐵 ∈ Fin → ( 𝑥𝐵𝐶 ) ∈ Fin )
3 1 2 eqeltrid ( 𝐵 ∈ Fin → 𝐴 ∈ Fin )
4 rnfi ( 𝐴 ∈ Fin → ran 𝐴 ∈ Fin )
5 3 4 syl ( 𝐵 ∈ Fin → ran 𝐴 ∈ Fin )