Metamath Proof Explorer


Theorem rnmptn0

Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rnmpt0f.1 𝑥 𝜑
rnmpt0f.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
rnmpt0f.3 𝐹 = ( 𝑥𝐴𝐵 )
rnmptn0.a ( 𝜑𝐴 ≠ ∅ )
Assertion rnmptn0 ( 𝜑 → ran 𝐹 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 rnmpt0f.1 𝑥 𝜑
2 rnmpt0f.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 rnmpt0f.3 𝐹 = ( 𝑥𝐴𝐵 )
4 rnmptn0.a ( 𝜑𝐴 ≠ ∅ )
5 4 neneqd ( 𝜑 → ¬ 𝐴 = ∅ )
6 1 2 3 rnmpt0f ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) )
7 5 6 mtbird ( 𝜑 → ¬ ran 𝐹 = ∅ )
8 7 neqned ( 𝜑 → ran 𝐹 ≠ ∅ )