Metamath Proof Explorer
Description: The range of a function in maps-to notation is nonempty if the domain is
nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)
|
|
Ref |
Expression |
|
Hypotheses |
rnmpt0f.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
rnmpt0f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
|
|
rnmpt0f.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
|
|
rnmptn0.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
|
Assertion |
rnmptn0 |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rnmpt0f.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rnmpt0f.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
rnmpt0f.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
|
rnmptn0.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
5 |
4
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = ∅ ) |
6 |
1 2 3
|
rnmpt0f |
⊢ ( 𝜑 → ( ran 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |
7 |
5 6
|
mtbird |
⊢ ( 𝜑 → ¬ ran 𝐹 = ∅ ) |
8 |
7
|
neqned |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |