| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnmptpr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | rnmptpr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | rnmptpr.f | ⊢ 𝐹  =  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  𝐶 ) | 
						
							| 4 |  | rnmptpr.d | ⊢ ( 𝑥  =  𝐴  →  𝐶  =  𝐷 ) | 
						
							| 5 |  | rnmptpr.e | ⊢ ( 𝑥  =  𝐵  →  𝐶  =  𝐸 ) | 
						
							| 6 | 4 | eqeq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  =  𝐶  ↔  𝑦  =  𝐷 ) ) | 
						
							| 7 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝐵  →  ( 𝑦  =  𝐶  ↔  𝑦  =  𝐸 ) ) | 
						
							| 8 | 6 7 | rexprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } 𝑦  =  𝐶  ↔  ( 𝑦  =  𝐷  ∨  𝑦  =  𝐸 ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } 𝑦  =  𝐶  ↔  ( 𝑦  =  𝐷  ∨  𝑦  =  𝐸 ) ) ) | 
						
							| 10 | 3 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } 𝑦  =  𝐶 ) ) | 
						
							| 11 | 10 | elv | ⊢ ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } 𝑦  =  𝐶 ) | 
						
							| 12 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 13 | 12 | elpr | ⊢ ( 𝑦  ∈  { 𝐷 ,  𝐸 }  ↔  ( 𝑦  =  𝐷  ∨  𝑦  =  𝐸 ) ) | 
						
							| 14 | 9 11 13 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  𝐹  ↔  𝑦  ∈  { 𝐷 ,  𝐸 } ) ) | 
						
							| 15 | 14 | eqrdv | ⊢ ( 𝜑  →  ran  𝐹  =  { 𝐷 ,  𝐸 } ) |