Metamath Proof Explorer


Theorem rnmptssdff

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rnmptssdff.1 𝑥 𝜑
rnmptssdff.2 𝑥 𝐴
rnmptssdff.3 𝑥 𝐶
rnmptssdff.4 𝐹 = ( 𝑥𝐴𝐵 )
rnmptssdff.5 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion rnmptssdff ( 𝜑 → ran 𝐹𝐶 )

Proof

Step Hyp Ref Expression
1 rnmptssdff.1 𝑥 𝜑
2 rnmptssdff.2 𝑥 𝐴
3 rnmptssdff.3 𝑥 𝐶
4 rnmptssdff.4 𝐹 = ( 𝑥𝐴𝐵 )
5 rnmptssdff.5 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
6 1 5 ralrimia ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
7 2 3 4 rnmptssff ( ∀ 𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶 )
8 6 7 syl ( 𝜑 → ran 𝐹𝐶 )