Metamath Proof Explorer


Theorem rnmptssff

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rnmptssff.1 𝑥 𝐴
rnmptssff.2 𝑥 𝐶
rnmptssff.3 𝐹 = ( 𝑥𝐴𝐵 )
Assertion rnmptssff ( ∀ 𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶 )

Proof

Step Hyp Ref Expression
1 rnmptssff.1 𝑥 𝐴
2 rnmptssff.2 𝑥 𝐶
3 rnmptssff.3 𝐹 = ( 𝑥𝐴𝐵 )
4 1 2 3 fmptff ( ∀ 𝑥𝐴 𝐵𝐶𝐹 : 𝐴𝐶 )
5 frn ( 𝐹 : 𝐴𝐶 → ran 𝐹𝐶 )
6 4 5 sylbi ( ∀ 𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶 )