Metamath Proof Explorer


Theorem rnopab

Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 4-Dec-2016)

Ref Expression
Assertion rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝜑 }

Proof

Step Hyp Ref Expression
1 nfopab1 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
2 nfopab2 𝑦 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
3 1 2 dfrnf ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦 }
4 df-br ( 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
5 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜑 )
6 4 5 bitri ( 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦𝜑 )
7 6 exbii ( ∃ 𝑥 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦 ↔ ∃ 𝑥 𝜑 )
8 7 abbii { 𝑦 ∣ ∃ 𝑥 𝑥 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑦 } = { 𝑦 ∣ ∃ 𝑥 𝜑 }
9 3 8 eqtri ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝜑 }