Metamath Proof Explorer


Theorem rnoprab2

Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012)

Ref Expression
Assertion rnoprab2 ran { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) } = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝜑 }

Proof

Step Hyp Ref Expression
1 rnoprab ran { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) } = { 𝑧 ∣ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) }
2 r2ex ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )
3 2 abbii { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝜑 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) }
4 1 3 eqtr4i ran { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) } = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝜑 }