Step |
Hyp |
Ref |
Expression |
1 |
|
rnsnf.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
rnsnf.2 |
⊢ ( 𝜑 → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
3 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
5 |
4
|
mpteq2ia |
⊢ ( 𝑥 ∈ { 𝐴 } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝐴 } ↦ ( 𝐹 ‘ 𝐴 ) ) |
6 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ { 𝐴 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ V ) |
8 |
|
fmptsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
9 |
1 7 8
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
10 |
5 6 9
|
3eqtr4a |
⊢ ( 𝜑 → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
11 |
10
|
rneqd |
⊢ ( 𝜑 → ran 𝐹 = ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
12 |
|
rnsnopg |
⊢ ( 𝐴 ∈ 𝑉 → ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = { ( 𝐹 ‘ 𝐴 ) } ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = { ( 𝐹 ‘ 𝐴 ) } ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ran 𝐹 = { ( 𝐹 ‘ 𝐴 ) } ) |