Metamath Proof Explorer


Theorem rnsnn0

Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion rnsnn0 ( 𝐴 ∈ ( V × V ) ↔ ran { 𝐴 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dmsnn0 ( 𝐴 ∈ ( V × V ) ↔ dom { 𝐴 } ≠ ∅ )
2 dm0rn0 ( dom { 𝐴 } = ∅ ↔ ran { 𝐴 } = ∅ )
3 2 necon3bii ( dom { 𝐴 } ≠ ∅ ↔ ran { 𝐴 } ≠ ∅ )
4 1 3 bitri ( 𝐴 ∈ ( V × V ) ↔ ran { 𝐴 } ≠ ∅ )