Metamath Proof Explorer


Theorem rnsnop

Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis cnvsn.1 𝐴 ∈ V
Assertion rnsnop ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 }

Proof

Step Hyp Ref Expression
1 cnvsn.1 𝐴 ∈ V
2 rnsnopg ( 𝐴 ∈ V → ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 } )
3 1 2 ax-mp ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 }