Metamath Proof Explorer


Theorem rnsnopg

Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion rnsnopg ( 𝐴𝑉 → ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 df-rn ran { ⟨ 𝐴 , 𝐵 ⟩ } = dom { ⟨ 𝐴 , 𝐵 ⟩ }
2 dfdm4 dom { ⟨ 𝐵 , 𝐴 ⟩ } = ran { ⟨ 𝐵 , 𝐴 ⟩ }
3 df-rn ran { ⟨ 𝐵 , 𝐴 ⟩ } = dom { ⟨ 𝐵 , 𝐴 ⟩ }
4 cnvcnvsn { ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ }
5 4 dmeqi dom { ⟨ 𝐵 , 𝐴 ⟩ } = dom { ⟨ 𝐴 , 𝐵 ⟩ }
6 2 3 5 3eqtri dom { ⟨ 𝐵 , 𝐴 ⟩ } = dom { ⟨ 𝐴 , 𝐵 ⟩ }
7 1 6 eqtr4i ran { ⟨ 𝐴 , 𝐵 ⟩ } = dom { ⟨ 𝐵 , 𝐴 ⟩ }
8 dmsnopg ( 𝐴𝑉 → dom { ⟨ 𝐵 , 𝐴 ⟩ } = { 𝐵 } )
9 7 8 eqtrid ( 𝐴𝑉 → ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 } )