Description: Distributive law for range over union. Theorem 8 of Suppes p. 60. (Contributed by NM, 24-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | rnun | ⊢ ran ( 𝐴 ∪ 𝐵 ) = ( ran 𝐴 ∪ ran 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun | ⊢ ◡ ( 𝐴 ∪ 𝐵 ) = ( ◡ 𝐴 ∪ ◡ 𝐵 ) | |
2 | 1 | dmeqi | ⊢ dom ◡ ( 𝐴 ∪ 𝐵 ) = dom ( ◡ 𝐴 ∪ ◡ 𝐵 ) |
3 | dmun | ⊢ dom ( ◡ 𝐴 ∪ ◡ 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) | |
4 | 2 3 | eqtri | ⊢ dom ◡ ( 𝐴 ∪ 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) |
5 | df-rn | ⊢ ran ( 𝐴 ∪ 𝐵 ) = dom ◡ ( 𝐴 ∪ 𝐵 ) | |
6 | df-rn | ⊢ ran 𝐴 = dom ◡ 𝐴 | |
7 | df-rn | ⊢ ran 𝐵 = dom ◡ 𝐵 | |
8 | 6 7 | uneq12i | ⊢ ( ran 𝐴 ∪ ran 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) |
9 | 4 5 8 | 3eqtr4i | ⊢ ran ( 𝐴 ∪ 𝐵 ) = ( ran 𝐴 ∪ ran 𝐵 ) |