Description: Distributive law for range over union. Theorem 8 of Suppes p. 60. (Contributed by NM, 24-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnun | ⊢ ran ( 𝐴 ∪ 𝐵 ) = ( ran 𝐴 ∪ ran 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun | ⊢ ◡ ( 𝐴 ∪ 𝐵 ) = ( ◡ 𝐴 ∪ ◡ 𝐵 ) | |
| 2 | 1 | dmeqi | ⊢ dom ◡ ( 𝐴 ∪ 𝐵 ) = dom ( ◡ 𝐴 ∪ ◡ 𝐵 ) |
| 3 | dmun | ⊢ dom ( ◡ 𝐴 ∪ ◡ 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) | |
| 4 | 2 3 | eqtri | ⊢ dom ◡ ( 𝐴 ∪ 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) |
| 5 | df-rn | ⊢ ran ( 𝐴 ∪ 𝐵 ) = dom ◡ ( 𝐴 ∪ 𝐵 ) | |
| 6 | df-rn | ⊢ ran 𝐴 = dom ◡ 𝐴 | |
| 7 | df-rn | ⊢ ran 𝐵 = dom ◡ 𝐵 | |
| 8 | 6 7 | uneq12i | ⊢ ( ran 𝐴 ∪ ran 𝐵 ) = ( dom ◡ 𝐴 ∪ dom ◡ 𝐵 ) |
| 9 | 4 5 8 | 3eqtr4i | ⊢ ran ( 𝐴 ∪ 𝐵 ) = ( ran 𝐴 ∪ ran 𝐵 ) |