| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rnxrn | 
							⊢ ran  ( 𝑅  ⋉  ( 𝑆  ↾  𝐴 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							brres | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑢 ( 𝑆  ↾  𝐴 ) 𝑦  ↔  ( 𝑢  ∈  𝐴  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							⊢ ( 𝑢 ( 𝑆  ↾  𝐴 ) 𝑦  ↔  ( 𝑢  ∈  𝐴  ∧  𝑢 𝑆 𝑦 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi2i | 
							⊢ ( ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 )  ↔  ( 𝑢 𝑅 𝑥  ∧  ( 𝑢  ∈  𝐴  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							an12 | 
							⊢ ( ( 𝑢  ∈  𝐴  ∧  ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) )  ↔  ( 𝑢 𝑅 𝑥  ∧  ( 𝑢  ∈  𝐴  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitr4i | 
							⊢ ( ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 )  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 )  ↔  ∃ 𝑢 ( 𝑢  ∈  𝐴  ∧  ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑢  ∈  𝐴 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 )  ↔  ∃ 𝑢 ( 𝑢  ∈  𝐴  ∧  ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitr4i | 
							⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 )  ↔  ∃ 𝑢  ∈  𝐴 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							opabbii | 
							⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 ( 𝑆  ↾  𝐴 ) 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) }  | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqtri | 
							⊢ ran  ( 𝑅  ⋉  ( 𝑆  ↾  𝐴 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑆 𝑦 ) }  |