| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rolle.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rolle.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | rolle.lt | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | rolle.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 5 |  | rolle.d | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 6 |  | rolle.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 7 | 1 2 3 | ltled | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 8 | 1 2 7 4 | evthicc | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∃ 𝑣  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 9 |  | reeanv | ⊢ ( ∃ 𝑢  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑣  ∈  ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ∃ 𝑢  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∃ 𝑣  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑣  ∈  ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 11 |  | r19.26 | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 12 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐵  ∈  ℝ ) | 
						
							| 14 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐴  <  𝐵 ) | 
						
							| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 16 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑦  =  𝑡  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 20 | 19 | breq1d | ⊢ ( 𝑦  =  𝑡  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 21 | 20 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ↔  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 )  ≤  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 22 | 18 21 | sylib | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 )  ≤  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 23 | 22 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 )  ≤  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 24 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  𝑢  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 26 | 12 13 14 15 16 23 24 25 | rollelem | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑢  ∈  { 𝐴 ,  𝐵 } ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 27 | 26 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ¬  𝑢  ∈  { 𝐴 ,  𝐵 }  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 28 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐴  ∈  ℝ ) | 
						
							| 29 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐵  ∈  ℝ ) | 
						
							| 30 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  𝐴  <  𝐵 ) | 
						
							| 31 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 32 | 4 31 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 34 | 33 | renegcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 [,] 𝐵 ) )  →  - ( 𝐹 ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 35 | 34 | fmpttd | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 36 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 37 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 38 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 39 | 36 37 38 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ⊆  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) | 
						
							| 40 | 39 4 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 41 |  | eqid | ⊢ ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  =  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 42 | 41 | negfcncf | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  →  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 43 | 40 42 | syl | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 44 |  | cncfcdm | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | 
						
							| 45 | 36 43 44 | sylancr | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | 
						
							| 46 | 35 45 | mpbird | ⊢ ( 𝜑  →  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 48 | 36 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 49 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 50 | 1 2 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 51 |  | fss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 52 | 32 36 51 | sylancl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 53 | 52 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 54 | 53 | negcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 [,] 𝐵 ) )  →  - ( 𝐹 ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 55 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 56 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 57 |  | iccntr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 58 | 1 2 57 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 59 | 48 50 54 55 56 58 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 60 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 62 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 63 | 62 | sseli | ⊢ ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  →  𝑢  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 64 | 63 53 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 65 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  ∈  V ) | 
						
							| 66 | 32 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 68 |  | dvf | ⊢ ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℂ | 
						
							| 69 | 5 | feq2d | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℂ  ↔  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) | 
						
							| 70 | 68 69 | mpbii | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 71 | 70 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ) | 
						
							| 72 | 48 50 53 55 56 58 | dvmptntr | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑢 ) ) )  =  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 73 | 67 71 72 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑢 ) ) )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ) | 
						
							| 74 | 61 64 65 73 | dvmptneg | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ) | 
						
							| 75 | 59 74 | eqtrd | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ) | 
						
							| 76 | 75 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  dom  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ) | 
						
							| 77 |  | dmmptg | ⊢ ( ∀ 𝑢  ∈  ( 𝐴 (,) 𝐵 ) - ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  ∈  V  →  dom  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 78 |  | negex | ⊢ - ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  ∈  V | 
						
							| 79 | 78 | a1i | ⊢ ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  →  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  ∈  V ) | 
						
							| 80 | 77 79 | mprg | ⊢ dom  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) )  =  ( 𝐴 (,) 𝐵 ) | 
						
							| 81 | 76 80 | eqtrdi | ⊢ ( 𝜑  →  dom  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  dom  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 83 |  | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 84 | 32 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 85 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 86 | 84 85 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑣 )  ∈  ℝ ) | 
						
							| 87 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 88 | 87 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 89 | 86 88 | lenegd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  - ( 𝐹 ‘ 𝑦 )  ≤  - ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑢  =  𝑦  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 91 | 90 | negeqd | ⊢ ( 𝑢  =  𝑦  →  - ( 𝐹 ‘ 𝑢 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 92 |  | negex | ⊢ - ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 93 | 91 41 92 | fvmpt | ⊢ ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  =  - ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 95 |  | fveq2 | ⊢ ( 𝑢  =  𝑣  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 96 | 95 | negeqd | ⊢ ( 𝑢  =  𝑣  →  - ( 𝐹 ‘ 𝑢 )  =  - ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 97 |  | negex | ⊢ - ( 𝐹 ‘ 𝑣 )  ∈  V | 
						
							| 98 | 96 41 97 | fvmpt | ⊢ ( 𝑣  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 )  =  - ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 99 | 85 98 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 )  =  - ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 100 | 94 99 | breq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 )  ↔  - ( 𝐹 ‘ 𝑦 )  ≤  - ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 101 | 89 100 | bitr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) | 
						
							| 102 | 83 101 | imbitrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) | 
						
							| 103 | 102 | ralimdva | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) | 
						
							| 104 | 103 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) | 
						
							| 105 |  | fveq2 | ⊢ ( 𝑦  =  𝑡  →  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  =  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ) | 
						
							| 106 | 105 | breq1d | ⊢ ( 𝑦  =  𝑡  →  ( ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 )  ↔  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) | 
						
							| 107 | 106 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 )  ↔  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) | 
						
							| 108 | 104 107 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) | 
						
							| 109 | 108 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ∀ 𝑡  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 )  ≤  ( ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) | 
						
							| 110 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 111 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 112 | 28 29 30 47 82 109 110 111 | rollelem | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 113 | 75 | fveq1d | ⊢ ( 𝜑  →  ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  ( ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 ) ) | 
						
							| 114 |  | fveq2 | ⊢ ( 𝑢  =  𝑥  →  ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 115 | 114 | negeqd | ⊢ ( 𝑢  =  𝑥  →  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 116 |  | eqid | ⊢ ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) | 
						
							| 117 |  | negex | ⊢ - ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  V | 
						
							| 118 | 115 116 117 | fvmpt | ⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  - ( ( ℝ  D  𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 119 | 113 118 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 120 | 119 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  0  ↔  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 121 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  ( ℝ  D  𝐹 )  ↔  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 122 | 121 | biimpar | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 123 | 68 | ffvelcdmi | ⊢ ( 𝑥  ∈  dom  ( ℝ  D  𝐹 )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 125 | 124 | negeq0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0  ↔  - ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 126 | 120 125 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  0  ↔  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 127 | 126 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  0  ↔  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 128 | 127 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ( ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 )  =  0  ↔  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 129 | 112 128 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ∧  ¬  𝑣  ∈  { 𝐴 ,  𝐵 } ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 130 | 129 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ¬  𝑣  ∈  { 𝐴 ,  𝐵 }  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 131 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 132 | 131 | elpr | ⊢ ( 𝑢  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝑢  =  𝐴  ∨  𝑢  =  𝐵 ) ) | 
						
							| 133 |  | fveq2 | ⊢ ( 𝑢  =  𝐴  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 134 | 133 | a1i | ⊢ ( 𝜑  →  ( 𝑢  =  𝐴  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 135 | 6 | eqcomd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 136 |  | fveqeq2 | ⊢ ( 𝑢  =  𝐵  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 137 | 135 136 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑢  =  𝐵  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 138 | 134 137 | jaod | ⊢ ( 𝜑  →  ( ( 𝑢  =  𝐴  ∨  𝑢  =  𝐵 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 139 | 132 138 | biimtrid | ⊢ ( 𝜑  →  ( 𝑢  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 140 |  | eleq1w | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢  ∈  { 𝐴 ,  𝐵 }  ↔  𝑣  ∈  { 𝐴 ,  𝐵 } ) ) | 
						
							| 141 |  | fveqeq2 | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 142 | 140 141 | imbi12d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝑢  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) )  ↔  ( 𝑣  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 143 | 142 | imbi2d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝜑  →  ( 𝑢  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 ) ) )  ↔  ( 𝜑  →  ( 𝑣  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) ) | 
						
							| 144 | 143 139 | chvarvv | ⊢ ( 𝜑  →  ( 𝑣  ∈  { 𝐴 ,  𝐵 }  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 145 | 139 144 | anim12d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  { 𝐴 ,  𝐵 }  ∧  𝑣  ∈  { 𝐴 ,  𝐵 } )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 146 | 145 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑢  ∈  { 𝐴 ,  𝐵 }  ∧  𝑣  ∈  { 𝐴 ,  𝐵 } )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 147 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 148 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 149 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 150 | 147 148 7 149 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 151 | 32 150 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 152 | 151 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 153 | 88 152 | letri3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 154 |  | breq2 | ⊢ ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 155 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 )  →  ( ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 156 | 154 155 | bi2anan9 | ⊢ ( ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 157 | 156 | bibi2d | ⊢ ( ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 158 | 153 157 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 159 | 158 | impancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 160 | 159 | imp | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 161 | 160 | ralbidva | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 162 | 32 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 163 |  | fnconstg | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ℝ  →  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 164 | 151 163 | syl | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 165 |  | eqfnfv | ⊢ ( ( 𝐹  Fn  ( 𝐴 [,] 𝐵 )  ∧  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  Fn  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) | 
						
							| 166 | 162 164 165 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) | 
						
							| 167 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 168 | 167 | fvconst2 | ⊢ ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 169 | 168 | eqeq2d | ⊢ ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 170 | 169 | ralbiia | ⊢ ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 171 | 166 170 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 172 |  | ioon0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 (,) 𝐵 )  ≠  ∅  ↔  𝐴  <  𝐵 ) ) | 
						
							| 173 | 147 148 172 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ≠  ∅  ↔  𝐴  <  𝐵 ) ) | 
						
							| 174 | 3 173 | mpbird | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ ) | 
						
							| 175 |  | fconstmpt | ⊢ ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  =  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 176 | 175 | eqeq2i | ⊢ ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  ↔  𝐹  =  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 177 | 176 | biimpi | ⊢ ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  →  𝐹  =  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 178 | 177 | oveq2d | ⊢ ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  →  ( ℝ  D  𝐹 )  =  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 179 | 151 | recnd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 180 | 179 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℝ )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 181 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℝ )  →  0  ∈  ℂ ) | 
						
							| 182 | 61 179 | dvmptc | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ℝ  ↦  ( 𝐹 ‘ 𝐴 ) ) )  =  ( 𝑢  ∈  ℝ  ↦  0 ) ) | 
						
							| 183 | 61 180 181 182 50 55 56 58 | dvmptres2 | ⊢ ( 𝜑  →  ( ℝ  D  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝐴 ) ) )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ) | 
						
							| 184 | 178 183 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) )  →  ( ℝ  D  𝐹 )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ) | 
						
							| 185 | 184 | fveq1d | ⊢ ( ( 𝜑  ∧  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  ( ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ‘ 𝑥 ) ) | 
						
							| 186 |  | eqidd | ⊢ ( 𝑢  =  𝑥  →  0  =  0 ) | 
						
							| 187 |  | eqid | ⊢ ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 )  =  ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) | 
						
							| 188 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 189 | 186 187 188 | fvmpt | ⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( 𝑢  ∈  ( 𝐴 (,) 𝐵 )  ↦  0 ) ‘ 𝑥 )  =  0 ) | 
						
							| 190 | 185 189 | sylan9eq | ⊢ ( ( ( 𝜑  ∧  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) )  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 191 | 190 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) )  →  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 192 |  | r19.2z | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 193 | 174 191 192 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 194 | 193 | ex | ⊢ ( 𝜑  →  ( 𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 195 | 171 194 | sylbird | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 196 | 195 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐴 )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 197 | 161 196 | sylbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 198 | 197 | impancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝐴 )  ∧  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 199 | 146 198 | syld | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑢  ∈  { 𝐴 ,  𝐵 }  ∧  𝑣  ∈  { 𝐴 ,  𝐵 } )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 200 | 27 130 199 | ecased | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) | 
						
							| 201 | 200 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 202 | 11 201 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑣  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 203 | 202 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑣  ∈  ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑢 )  ∧  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 )  ≤  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) ) | 
						
							| 204 | 10 203 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑥 )  =  0 ) |