Step |
Hyp |
Ref |
Expression |
1 |
|
rolle.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
rolle.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
rolle.lt |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
rolle.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
5 |
|
rolle.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
6 |
|
rolle.r |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
7 |
|
rolle.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 [,] 𝐵 ) ) |
8 |
|
rolle.n |
⊢ ( 𝜑 → ¬ 𝑈 ∈ { 𝐴 , 𝐵 } ) |
9 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
10 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
11 |
1 2 3
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
12 |
|
prunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
14 |
7 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝑈 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
15 |
|
elun |
⊢ ( 𝑈 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑈 ∈ { 𝐴 , 𝐵 } ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑈 ∈ { 𝐴 , 𝐵 } ) ) |
17 |
16
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → 𝑈 ∈ { 𝐴 , 𝐵 } ) ) |
18 |
8 17
|
mt3d |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ) |
19 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
21 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
22 |
1 2 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
23 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
25 |
18 5
|
eleqtrrd |
⊢ ( 𝜑 → 𝑈 ∈ dom ( ℝ D 𝐹 ) ) |
26 |
|
ssralv |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) |
27 |
24 6 26
|
sylc |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
28 |
20 22 18 24 25 27
|
dvferm |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) |
29 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑈 → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
31 |
18 28 30
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |