| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | nndivre | ⊢ ( ( 2  ∈  ℝ  ∧  𝑁  ∈  ℕ )  →  ( 2  /  𝑁 )  ∈  ℝ ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 2  /  𝑁 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 2  /  𝑁 )  ∈  ℂ ) | 
						
							| 7 |  | cxpcl | ⊢ ( ( - 1  ∈  ℂ  ∧  ( 2  /  𝑁 )  ∈  ℂ )  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 8 | 1 6 7 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 9 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  - 1  ∈  ℂ ) | 
						
							| 10 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  - 1  ≠  0 ) | 
						
							| 12 | 9 11 6 | cxpne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ≠  0 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  𝐾  ∈  ℤ ) | 
						
							| 14 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 16 | 8 12 13 15 | expsubd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ ( 𝑁  −  𝐾 ) )  =  ( ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑁 )  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ) | 
						
							| 17 |  | root1id | ⊢ ( 𝑁  ∈  ℕ  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑁 )  =  1 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑁 )  =  1 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑁 )  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( 1  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ) | 
						
							| 20 | 8 12 13 | expclzd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 )  ∈  ℂ ) | 
						
							| 21 | 8 12 13 | expne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 )  ≠  0 ) | 
						
							| 22 |  | recval | ⊢ ( ( ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 )  ∈  ℂ  ∧  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 )  ≠  0 )  →  ( 1  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  /  ( ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ↑ 2 ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 1  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  /  ( ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ↑ 2 ) ) ) | 
						
							| 24 |  | absexpz | ⊢ ( ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ  ∧  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ≠  0  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ↑ 𝐾 ) ) | 
						
							| 25 | 8 12 13 24 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ↑ 𝐾 ) ) | 
						
							| 26 |  | abscxp2 | ⊢ ( ( - 1  ∈  ℂ  ∧  ( 2  /  𝑁 )  ∈  ℝ )  →  ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( ( abs ‘ - 1 ) ↑𝑐 ( 2  /  𝑁 ) ) ) | 
						
							| 27 | 1 5 26 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( ( abs ‘ - 1 ) ↑𝑐 ( 2  /  𝑁 ) ) ) | 
						
							| 28 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 29 | 28 | absnegi | ⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 ) | 
						
							| 30 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 31 | 29 30 | eqtri | ⊢ ( abs ‘ - 1 )  =  1 | 
						
							| 32 | 31 | oveq1i | ⊢ ( ( abs ‘ - 1 ) ↑𝑐 ( 2  /  𝑁 ) )  =  ( 1 ↑𝑐 ( 2  /  𝑁 ) ) | 
						
							| 33 | 27 32 | eqtrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( 1 ↑𝑐 ( 2  /  𝑁 ) ) ) | 
						
							| 34 | 6 | 1cxpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 1 ↑𝑐 ( 2  /  𝑁 ) )  =  1 ) | 
						
							| 35 | 33 34 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( abs ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ↑ 𝐾 )  =  ( 1 ↑ 𝐾 ) ) | 
						
							| 37 |  | 1exp | ⊢ ( 𝐾  ∈  ℤ  →  ( 1 ↑ 𝐾 )  =  1 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 1 ↑ 𝐾 )  =  1 ) | 
						
							| 39 | 25 36 38 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  1 ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 41 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 42 | 40 41 | eqtrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ↑ 2 )  =  1 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  /  ( ( abs ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ↑ 2 ) )  =  ( ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  /  1 ) ) | 
						
							| 44 | 20 | cjcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  ∈  ℂ ) | 
						
							| 45 | 44 | div1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  /  1 )  =  ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ) | 
						
							| 46 | 23 43 45 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( 1  /  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) ) ) | 
						
							| 47 | 16 19 46 | 3eqtrrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℤ )  →  ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝐾 ) )  =  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ ( 𝑁  −  𝐾 ) ) ) |