Metamath Proof Explorer


Theorem rpaddcld

Description: Closure law for addition of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
Assertion rpaddcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
3 rpaddcl ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐴 + 𝐵 ) ∈ ℝ+ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ+ )