Metamath Proof Explorer
Description: Closure law for addition of positive reals. Part of Axiom 7 of
Apostol p. 20. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
rpaddcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
Assertion |
rpaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ+ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
rpaddcld.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 + 𝐵 ) ∈ ℝ+ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ+ ) |