Metamath Proof Explorer


Theorem rpcoshcl

Description: The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion rpcoshcl ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 coshval ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) )
3 1 2 syl ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) )
4 rpefcl ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ+ )
5 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
6 5 rpefcld ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ+ )
7 4 6 rpaddcld ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ+ )
8 7 rphalfcld ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℝ+ )
9 3 8 eqeltrd ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ )