Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
coshval |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
4 |
|
rpefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ+ ) |
5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
6 |
5
|
rpefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ+ ) |
7 |
4 6
|
rpaddcld |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ+ ) |
8 |
7
|
rphalfcld |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
9 |
3 8
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |