| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | coshval | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 4 |  | rpefcl | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 5 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | rpefcld | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ - 𝐴 )  ∈  ℝ+ ) | 
						
							| 7 | 4 6 | rpaddcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 8 | 7 | rphalfcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 )  ∈  ℝ+ ) | 
						
							| 9 | 3 8 | eqeltrd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ+ ) |