Step |
Hyp |
Ref |
Expression |
1 |
|
rprege0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
2 |
|
recxpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
5 |
|
id |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) |
6 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
remulcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
9 |
|
efgt0 |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ → 0 < ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 0 < ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
11 |
|
rpcnne0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
12 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
13 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
15 |
11 12 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
16 |
10 15
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ↑𝑐 𝐵 ) ) |
17 |
4 16
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) |