Metamath Proof Explorer


Theorem rpcxpcld

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
rpcxpcld.2 ( 𝜑𝐵 ∈ ℝ )
Assertion rpcxpcld ( 𝜑 → ( 𝐴𝑐 𝐵 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpcxpcld.2 ( 𝜑𝐵 ∈ ℝ )
3 rpcxpcl ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( 𝐴𝑐 𝐵 ) ∈ ℝ+ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑐 𝐵 ) ∈ ℝ+ )