Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
rprene0 |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
3 |
|
redivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
4 |
3
|
3expb |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
5 |
1 2 4
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
6 |
|
elrp |
⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
7 |
|
elrp |
⊢ ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
8 |
|
divgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 / 𝐵 ) ) |
9 |
6 7 8
|
syl2anb |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 0 < ( 𝐴 / 𝐵 ) ) |
10 |
|
elrp |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ+ ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) |
11 |
5 9 10
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ+ ) |