Step |
Hyp |
Ref |
Expression |
1 |
|
0exp |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) |
2 |
1
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 ↑ 𝑁 ) gcd 0 ) = ( 0 gcd 0 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) |
4 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
5 |
|
oveq12 |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = ( ( 0 ↑ 𝑁 ) gcd 0 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = ( ( 0 ↑ 𝑁 ) gcd 0 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 gcd 𝐵 ) = ( 0 gcd 0 ) ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) |
10 |
7 9
|
bibi12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ↔ ( ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) ) |
11 |
3 10
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
13 |
|
exprmfct |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) |
14 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℤ ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝑁 ∈ ℕ ) |
16 |
15
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝑁 ∈ ℕ0 ) |
17 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
19 |
18
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
20 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ℤ ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
22 |
|
gcddvds |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) ) |
24 |
23
|
simpld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
25 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
26 |
25
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
27 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
28 |
14
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℂ ) |
29 |
|
expeq0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
30 |
28 15 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
31 |
30
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
32 |
27 31
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ) |
33 |
|
gcdn0cl |
⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ) |
34 |
18 20 32 33
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ) |
35 |
34
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ) |
37 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
38 |
26 36 19 37
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
39 |
24 38
|
mpan2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
41 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
42 |
15
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
43 |
|
prmdvdsexp |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑝 ∥ 𝐴 ) ) |
44 |
40 41 42 43
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑝 ∥ 𝐴 ) ) |
45 |
39 44
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ 𝐴 ) ) |
46 |
23
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) |
47 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
48 |
26 36 21 47
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
49 |
46 48
|
mpan2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
50 |
45 49
|
jcad |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
51 |
|
dvdsgcd |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
52 |
26 41 21 51
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
53 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
54 |
|
breq2 |
⊢ ( ( 𝐴 gcd 𝐵 ) = 1 → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) |
55 |
54
|
notbid |
⊢ ( ( 𝐴 gcd 𝐵 ) = 1 → ( ¬ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ ¬ 𝑝 ∥ 1 ) ) |
56 |
53 55
|
syl5ibrcom |
⊢ ( 𝑝 ∈ ℙ → ( ( 𝐴 gcd 𝐵 ) = 1 → ¬ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
57 |
56
|
necon2ad |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
58 |
57
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
59 |
50 52 58
|
3syld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
60 |
59
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
61 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
62 |
61
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
63 |
|
eluz2b3 |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
64 |
63
|
baib |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
65 |
62 64
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
66 |
60 65
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
67 |
13 66
|
syl5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
68 |
|
exprmfct |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) |
69 |
62
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
70 |
69
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
71 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
72 |
41 21 71
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
73 |
72
|
simpld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
74 |
|
iddvdsexp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∥ ( 𝐴 ↑ 𝑁 ) ) |
75 |
41 42 74
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∥ ( 𝐴 ↑ 𝑁 ) ) |
76 |
70 41 19 73 75
|
dvdstrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
77 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
78 |
26 70 19 77
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
79 |
76 78
|
mpan2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
80 |
72
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
81 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
82 |
26 70 21 81
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
83 |
80 82
|
mpan2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
84 |
79 83
|
jcad |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) ) ) |
85 |
|
dvdsgcd |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) |
86 |
26 19 21 85
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) |
87 |
|
breq2 |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) |
88 |
87
|
notbid |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ( ¬ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ↔ ¬ 𝑝 ∥ 1 ) ) |
89 |
53 88
|
syl5ibrcom |
⊢ ( 𝑝 ∈ ℙ → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ¬ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) |
90 |
89
|
necon2ad |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
91 |
90
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
92 |
84 86 91
|
3syld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
93 |
92
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
94 |
|
eluz2b3 |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
95 |
94
|
baib |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
96 |
34 95
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
97 |
93 96
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
98 |
68 97
|
syl5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
99 |
67 98
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
100 |
99 96 65
|
3bitr3d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
101 |
100
|
necon4bid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
102 |
101
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
103 |
12 102
|
pm2.61d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |