| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpexp1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  =  1  →  ( ( 𝐴 ↑ 𝑀 )  gcd  𝐵 )  =  1 ) ) | 
						
							| 2 | 1 | 3adant3r | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐴  gcd  𝐵 )  =  1  →  ( ( 𝐴 ↑ 𝑀 )  gcd  𝐵 )  =  1 ) ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 5 |  | simp3l | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 6 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℤ ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℤ ) | 
						
							| 8 |  | simp3r | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 |  | rpexp1i | ⊢ ( ( 𝐵  ∈  ℤ  ∧  ( 𝐴 ↑ 𝑀 )  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1  →  ( ( 𝐵 ↑ 𝑁 )  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1 ) ) | 
						
							| 10 | 3 7 8 9 | syl3anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐵  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1  →  ( ( 𝐵 ↑ 𝑁 )  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1 ) ) | 
						
							| 11 | 7 3 | gcdcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐴 ↑ 𝑀 )  gcd  𝐵 )  =  ( 𝐵  gcd  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ( 𝐴 ↑ 𝑀 )  gcd  𝐵 )  =  1  ↔  ( 𝐵  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1 ) ) | 
						
							| 13 |  | zexpcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 14 | 3 8 13 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 15 | 7 14 | gcdcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐴 ↑ 𝑀 )  gcd  ( 𝐵 ↑ 𝑁 ) )  =  ( ( 𝐵 ↑ 𝑁 )  gcd  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ( 𝐴 ↑ 𝑀 )  gcd  ( 𝐵 ↑ 𝑁 ) )  =  1  ↔  ( ( 𝐵 ↑ 𝑁 )  gcd  ( 𝐴 ↑ 𝑀 ) )  =  1 ) ) | 
						
							| 17 | 10 12 16 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ( 𝐴 ↑ 𝑀 )  gcd  𝐵 )  =  1  →  ( ( 𝐴 ↑ 𝑀 )  gcd  ( 𝐵 ↑ 𝑁 ) )  =  1 ) ) | 
						
							| 18 | 2 17 | syld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐴  gcd  𝐵 )  =  1  →  ( ( 𝐴 ↑ 𝑀 )  gcd  ( 𝐵 ↑ 𝑁 ) )  =  1 ) ) |