Step |
Hyp |
Ref |
Expression |
1 |
|
rpexp1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
2 |
1
|
3adant3r |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐵 ∈ ℤ ) |
4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐴 ∈ ℤ ) |
5 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑀 ∈ ℕ0 ) |
6 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
8 |
|
simp3r |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 ) |
9 |
|
rpexp1i |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
10 |
3 7 8 9
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
11 |
7 3
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ↔ ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
13 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
14 |
3 8 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
15 |
7 14
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ↔ ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
17 |
10 12 16
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |
18 |
2 17
|
syld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |