Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
2 |
|
rpexp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
3 |
2
|
biimprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
4 |
3
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
6 |
5
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 0 ) ) |
7 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝐴 ∈ ℂ ) |
9 |
8
|
exp0d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 0 ) = 1 ) |
10 |
6 9
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐴 ↑ 𝑀 ) = 1 ) |
11 |
10
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = ( 1 gcd 𝐵 ) ) |
12 |
|
1gcd |
⊢ ( 𝐵 ∈ ℤ → ( 1 gcd 𝐵 ) = 1 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 1 gcd 𝐵 ) = 1 ) |
14 |
11 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) |
15 |
14
|
a1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
16 |
4 15
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
17 |
1 16
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
18 |
17
|
3impa |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |