Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℝ+ ) |
2 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝐴 ≠ 0 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
5 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
7 |
5 6
|
sstri |
⊢ ℝ+ ⊆ ℂ |
8 |
|
rpmulcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
9 |
|
1rp |
⊢ 1 ∈ ℝ+ |
10 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
11 |
10
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
12 |
7 8 9 11
|
expcl2lem |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
13 |
1 3 4 12
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |