Metamath Proof Explorer


Theorem rpexpcl

Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion rpexpcl ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → 𝐴 ∈ ℝ+ )
2 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
3 2 adantr ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → 𝐴 ≠ 0 )
4 simpr ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ )
5 rpssre + ⊆ ℝ
6 ax-resscn ℝ ⊆ ℂ
7 5 6 sstri + ⊆ ℂ
8 rpmulcl ( ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ )
9 1rp 1 ∈ ℝ+
10 rpreccl ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ )
11 10 adantr ( ( 𝑥 ∈ ℝ+𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ+ )
12 7 8 9 11 expcl2lem ( ( 𝐴 ∈ ℝ+𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℝ+ )
13 1 3 4 12 syl3anc ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℝ+ )