Metamath Proof Explorer
Description: Closure law for exponentiation of positive reals. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
rpexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
Assertion |
rpexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
rpexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |