Metamath Proof Explorer


Theorem rpexpcld

Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
rpexpcld.2 ( 𝜑𝑁 ∈ ℤ )
Assertion rpexpcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpexpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpexpcld.2 ( 𝜑𝑁 ∈ ℤ )
3 rpexpcl ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℝ+ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ+ )