| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎 ↑ 𝑁 )  =  ( 𝑏 ↑ 𝑁 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ↑ 𝑁 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑎  =  𝐵  →  ( 𝑎 ↑ 𝑁 )  =  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 4 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 5 |  | rpre | ⊢ ( 𝑎  ∈  ℝ+  →  𝑎  ∈  ℝ ) | 
						
							| 6 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | reexpcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑎 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑎  ∈  ℝ+ )  →  ( 𝑎 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 9 |  | simplrl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑎  ∈  ℝ+ ) | 
						
							| 10 | 9 | rpred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑎  ∈  ℝ ) | 
						
							| 11 |  | simplrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑏  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑏  ∈  ℝ ) | 
						
							| 13 | 9 | rpge0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  0  ≤  𝑎 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑎  <  𝑏 ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  𝑁  ∈  ℕ ) | 
						
							| 16 |  | expmordi | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 0  ≤  𝑎  ∧  𝑎  <  𝑏 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑎 ↑ 𝑁 )  <  ( 𝑏 ↑ 𝑁 ) ) | 
						
							| 17 | 10 12 13 14 15 16 | syl221anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  ∧  𝑎  <  𝑏 )  →  ( 𝑎 ↑ 𝑁 )  <  ( 𝑏 ↑ 𝑁 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ ) )  →  ( 𝑎  <  𝑏  →  ( 𝑎 ↑ 𝑁 )  <  ( 𝑏 ↑ 𝑁 ) ) ) | 
						
							| 19 | 1 2 3 4 8 18 | ltord1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ ) )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 20 | 19 | 3impb | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐵 ↑ 𝑁 ) ) ) |