| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ↑ 𝑁 ) = ( 𝑏 ↑ 𝑁 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) |
| 4 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 5 |
|
rpre |
⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ ) |
| 6 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 7 |
|
reexpcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑎 ↑ 𝑁 ) ∈ ℝ ) |
| 8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑎 ∈ ℝ+ ) → ( 𝑎 ↑ 𝑁 ) ∈ ℝ ) |
| 9 |
|
simplrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ ℝ+ ) |
| 10 |
9
|
rpred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ ℝ ) |
| 11 |
|
simplrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ ℝ+ ) |
| 12 |
11
|
rpred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ ℝ ) |
| 13 |
9
|
rpge0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 0 ≤ 𝑎 ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 < 𝑏 ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → 𝑁 ∈ ℕ ) |
| 16 |
|
expmordi |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 0 ≤ 𝑎 ∧ 𝑎 < 𝑏 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) |
| 17 |
10 12 13 14 15 16
|
syl221anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) ∧ 𝑎 < 𝑏 ) → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) → ( 𝑎 < 𝑏 → ( 𝑎 ↑ 𝑁 ) < ( 𝑏 ↑ 𝑁 ) ) ) |
| 19 |
1 2 3 4 8 18
|
ltord1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |
| 20 |
19
|
3impb |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) ) |