Metamath Proof Explorer


Theorem rpgecl

Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion rpgecl ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ )
2 0red ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 0 ∈ ℝ )
3 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
4 3 3ad2ant1 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ )
5 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
6 5 3ad2ant1 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 0 < 𝐴 )
7 simp3 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐴𝐵 )
8 2 4 1 6 7 ltletrd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 0 < 𝐵 )
9 elrp ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
10 1 8 9 sylanbrc ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ+ )