Metamath Proof Explorer
		
		
		
		Description:  A number greater than or equal to a positive real is positive real.
         (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rpgecld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | rpgecld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
					
						|  |  | rpgecld.3 | ⊢ ( 𝜑  →  𝐵  ≤  𝐴 ) | 
				
					|  | Assertion | rpgecld | ⊢  ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpgecld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rpgecld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | rpgecld.3 | ⊢ ( 𝜑  →  𝐵  ≤  𝐴 ) | 
						
							| 4 |  | rpgecl | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐴  ∈  ℝ  ∧  𝐵  ≤  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 5 | 2 1 3 4 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) |