Metamath Proof Explorer


Theorem rpgtrecnn

Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion rpgtrecnn ( 𝐴 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 rpreccl ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ )
2 1 rpred ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ )
3 1 rpge0d ( 𝐴 ∈ ℝ+ → 0 ≤ ( 1 / 𝐴 ) )
4 flge0nn0 ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 )
5 2 3 4 syl2anc ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 )
6 nn0p1nn ( ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ )
7 5 6 syl ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ )
8 flltp1 ( ( 1 / 𝐴 ) ∈ ℝ → ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) )
9 2 8 syl ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) )
10 7 nnrpd ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℝ+ )
11 1 10 ltrecd ( 𝐴 ∈ ℝ+ → ( ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < ( 1 / ( 1 / 𝐴 ) ) ) )
12 9 11 mpbid ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < ( 1 / ( 1 / 𝐴 ) ) )
13 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
14 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
15 13 14 recrecd ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )
16 12 15 breqtrd ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 )
17 oveq2 ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) )
18 17 breq1d ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) → ( ( 1 / 𝑛 ) < 𝐴 ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 ) )
19 18 rspcev ( ( ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ ∧ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 )
20 7 16 19 syl2anc ( 𝐴 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 )