Step |
Hyp |
Ref |
Expression |
1 |
|
rpreccl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) |
2 |
1
|
rpred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
3 |
1
|
rpge0d |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ ( 1 / 𝐴 ) ) |
4 |
|
flge0nn0 |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐴 ) ) → ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 ) |
6 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 1 / 𝐴 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ ) |
8 |
|
flltp1 |
⊢ ( ( 1 / 𝐴 ) ∈ ℝ → ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) |
10 |
7
|
nnrpd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℝ+ ) |
11 |
1 10
|
ltrecd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 / 𝐴 ) < ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
12 |
9 11
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < ( 1 / ( 1 / 𝐴 ) ) ) |
13 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
14 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
15 |
13 14
|
recrecd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
16 |
12 15
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 ) |
17 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) → ( ( 1 / 𝑛 ) < 𝐴 ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 ) ) |
19 |
18
|
rspcev |
⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ∈ ℕ ∧ ( 1 / ( ( ⌊ ‘ ( 1 / 𝐴 ) ) + 1 ) ) < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) |
20 |
7 16 19
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) |