Metamath Proof Explorer


Theorem rphalfcl

Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion rphalfcl ( 𝐴 ∈ ℝ+ → ( 𝐴 / 2 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 2rp 2 ∈ ℝ+
2 rpdivcl ( ( 𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( 𝐴 / 2 ) ∈ ℝ+ )
3 1 2 mpan2 ( 𝐴 ∈ ℝ+ → ( 𝐴 / 2 ) ∈ ℝ+ )