Metamath Proof Explorer


Theorem rphalflt

Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014)

Ref Expression
Assertion rphalflt ( 𝐴 ∈ ℝ+ → ( 𝐴 / 2 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
2 halfpos ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 𝐴 / 2 ) < 𝐴 ) )
3 2 biimpa ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 / 2 ) < 𝐴 )
4 1 3 sylbi ( 𝐴 ∈ ℝ+ → ( 𝐴 / 2 ) < 𝐴 )