Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
2 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
3 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
4 |
|
0lt1 |
⊢ 0 < 1 |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
7 |
2 3 1 5 6
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
8 |
1 7
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
9 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
11 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
12 |
|
1rp |
⊢ 1 ∈ ℝ+ |
13 |
|
logltb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 1 < 𝐴 ↔ ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) ) |
14 |
12 8 13
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 < 𝐴 ↔ ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) ) |
15 |
6 14
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) |
16 |
11 15
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( log ‘ 𝐴 ) ) |
17 |
10 16
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |