Metamath Proof Explorer
Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
relogefd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
rplogcld.2 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
|
Assertion |
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
relogefd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
rplogcld.2 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
3 |
|
rplogcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ+ ) |