Metamath Proof Explorer


Theorem rpltrp

Description: For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion rpltrp 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥

Proof

Step Hyp Ref Expression
1 rphalfcl ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ )
2 breq1 ( 𝑦 = ( 𝑥 / 2 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 2 ) < 𝑥 ) )
3 2 adantl ( ( 𝑥 ∈ ℝ+𝑦 = ( 𝑥 / 2 ) ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 2 ) < 𝑥 ) )
4 rphalflt ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 )
5 1 3 4 rspcedvd ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 )
6 5 rgen 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥