Metamath Proof Explorer


Theorem rpmsubg

Description: The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
Assertion rpmsubg + ∈ ( SubGrp ‘ 𝑀 )

Proof

Step Hyp Ref Expression
1 cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
2 rpcn ( 𝑥 ∈ ℝ+𝑥 ∈ ℂ )
3 rpne0 ( 𝑥 ∈ ℝ+𝑥 ≠ 0 )
4 rpmulcl ( ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ )
5 1rp 1 ∈ ℝ+
6 rpreccl ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ )
7 1 2 3 4 5 6 cnmsubglem + ∈ ( SubGrp ‘ 𝑀 )