Description: The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| Assertion | rpmsubg | ⊢ ℝ+ ∈ ( SubGrp ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 2 | rpcn | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) | |
| 3 | rpne0 | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) | |
| 4 | rpmulcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) | |
| 5 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 6 | rpreccl | ⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) | |
| 7 | 1 2 3 4 5 6 | cnmsubglem | ⊢ ℝ+ ∈ ( SubGrp ‘ 𝑀 ) |