| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdmultiple |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) = 𝐾 ) |
| 2 |
1
|
3adant2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) = 𝐾 ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) |
| 4 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
| 6 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 7 |
|
zmulcl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 8 |
4 6 7
|
syl2an |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 9 |
8
|
3adant2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 10 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 11 |
|
zmulcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 12 |
10 6 11
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 14 |
|
gcdass |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 15 |
5 9 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 16 |
3 15
|
eqtr3d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 18 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 19 |
|
mulgcdr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) ) |
| 20 |
4 10 18 19
|
syl3an |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) ) |
| 21 |
|
oveq1 |
⊢ ( ( 𝐾 gcd 𝑀 ) = 1 → ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) = ( 1 · 𝑁 ) ) |
| 22 |
20 21
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( 1 · 𝑁 ) ) |
| 23 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 24 |
23
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝑁 ∈ ℂ ) |
| 26 |
25
|
mullidd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = 𝑁 ) |
| 28 |
27
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) = ( 𝐾 gcd 𝑁 ) ) |
| 29 |
17 28
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd 𝑁 ) ) |